George Bernard Dantzig | |
---|---|
Born | November 8, 1914 Portland, Oregon |
Died | May 13, 2005 Stanford, California |
(aged 90)
Citizenship | American |
Fields | Mathematician Operations research Computer science Economics Statistics |
Institutions |
U.S. Air Force Office of Statistical Control Stanford University |
Alma mater | Bachelor's degrees - University of Maryland Master's degree - University of Michigan Doctor of Philosophy - University of California, Berkeley |
Doctoral advisor | Jerzy Neyman |
Doctoral students | Ilan Adler Kurt Anstreicher John Birge Richard W. Cottle B. Curtis Eaves Robert Fourer Saul Gass Alfredo Iusem Ellis L. Johnson Hiroshi Konno Irvin Lustig Thomas Magnanti S. Thomas McCormick, V David Morton Mukund Thapa Craig Tovey Alan Tucker Richard Van Slyke Roger J-B Wets Robert Wittrock Yinyu Ye |
Known for | Linear programming Simplex algorithm Dantzig-Wolfe decomposition principle Generalized linear programming Generalized upper bounding Max-flow min-cut theorem of networks Quadratic programming Complementary pivot algorithms Linear complementary problem Stochastic programming |
Influences | Wassily Leontief John von Neumann Marshal K. Wood |
Influenced | Kenneth J. Arrow Robert Dorfman Leonid Hurwicz Tjalling C. Koopmans Thomas L. Saaty Paul Samuelson Phil. Wolfe |
Notable awards |
John von Neumann Theory Prize [1974] |
George Bernard Dantzig (November 8, 1914 – May 13, 2005) was an American mathematician, and the Professor Emeritus of Transportation Sciences and Professor of Operations Research and of Computer Science at Stanford.
Dantzig is known for his development of the simplex algorithm, an algorithm for solving linear programming problems[1], and his work with linear programming, some years after it was initially invented by Soviet economist and mathematician Leonid Kantorovich.[2] Dantzig is the subject of a tale, often thought to be fictional, of a student solving an important unsolved problem after mistaking it for homework.
Contents |
George Dantzig was born in Portland, Oregon, and with his middle name "Bernard" named after the writer George Bernard Shaw.[2] His father, Tobias Dantzig, was a Baltic German mathematician and his mother the French linguist Anja Ourisson. They had met during their study at the Sorbonne University in Paris, where Tobias studied with Henri Poincaré. They immigrated to the United States and settled in Portland, Oregon. Early in the 1920s the family moved over Baltimore to Washington. Anja Dantzig became a linguist at the Library of Congress, Dantzig senior became a math tutor at the University of Maryland, College Park, and George attended Powell Junior High School and Central High School. At highschool he was already fascinated by geometry, and this interest was further nurtured his father, by challenging him with complex geometry problems.[1]
George Dantzig earned bachelor's degrees in mathematics and physics from the University of Maryland in 1936, his master's degree in mathematics from the University of Michigan in 1938. After a two-year period at the Bureau of Labor Statistics, he enrolled in the doctoral program in mathematics at the University of California, Berkeley studying statistics under mathematician Jerzy Neyman.
With the outbreak of World War II, George took a leave of absence from the doctoral program at Berkeley to join the U.S. Air Force Office of Statistical Control. In 1946, he returned to Berkeley to complete the requirements of his program and received his Ph.D. that year.[2]
In 1952 Dantzig joined the mathematics division of the RAND Corporation. By 1960 he became a professor in the Department of Industrial Engineering at UC Berkeley, where he founded and directed the Operations Research Center. In 1966 he joined the Stanford faculty as Professor of Operations Research and of Computer Science. A year later, the Program in Operations Research became a full-fledged department. In 1973 he founded the Systems Optimization Laboratory (SOL) there. On a sabbatical leave that year, he headed the Methodology Group at the International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria. Later he became the C. A. Criley Professor of Transportation Sciences at Stanford, and kept going, well beyond his mandatory retirement in 1985.[2]
He was a member of the National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences. And he was the recipient of many honors, including the first John von Neumann Theory Prize in 1974, the National Medal of Science in 1975[3], an honorary doctorate from the University of Maryland, College Park in 1976. The Mathematical Programming Society honored Dantzig by creating the George B. Dantzig Prize, bestowed every three years since 1982 on one or two people who have made a significant impact in the field of mathematical programming.
Dantzig died on May 13, 2005, in his home in Stanford, California, of complications from diabetes and cardiovascular disease. He was 90 years old.
Dantzig is "generally regarded as one of the three founders of linear programming, along with John von Neumann and Leonid Kantorovich", according to Freund (1994), "through his research in mathematical theory, computation, economic analysis, and applications to industrial problems, he has contributed more than any other researcher to the remarkable development of linear programming".[4]
Dantzig's seminal work allows the airline industry, for example, to schedule crews and make fleet assignments. Based on his work tools are developed "that shipping companies use to determine how many planes they need and where their delivery trucks should be deployed. The oil industry long has used linear programming in refinery planning, as it determines how much of its raw product should become different grades of gasoline and how much should be used for petroleum-based byproducts. It's used in manufacturing, revenue management, telecommunications, advertising, architecture, circuit design and countless other areas".[1]
An event in Dantzig's life became the origin of a famous story in 1939 while he was a graduate student at UC Berkeley. Near the beginning of a class for which Dantzig was late, professor Jerzy Neyman wrote two examples of famously unsolved statistics problems on the blackboard. When Dantzig arrived, he assumed that the two problems were a homework assignment and wrote them down. According to Dantzig, the problems "seemed to be a little harder than usual", but a few days later he handed in completed solutions for the two problems, still believing that they were an assignment that was overdue.[5]
Six weeks later, Dantzig received a visit from an excited professor Neyman, eager to tell him that the homework problems he had solved were two of the most famous unsolved problems in statistics.[1] He had prepared one of Dantzig's solutions for publication in a mathematical journal. Years later another researcher, Abraham Wald, was preparing to publish a paper which arrived at a conclusion for the second problem, and included Dantzig as its co-author when he learned of the earlier solution.
This story began to spread, and was used as a motivational lesson demonstrating the power of positive thinking. Over time Dantzig's name was removed and facts were altered, but the basic story persisted in the form of an urban legend, and as an introductory scene in the movie Good Will Hunting.
In 1946, as mathematical adviser to the U.S. Air Force Comptroller, he was challenged by his Pentagon colleagues to see what he could do to mechanize the planning process, "to more rapidly compute a time-staged deployment, training and logistical supply program." In those pre-electronic computer days, mechanization meant using analog devices or punched-card machines. "Program" at that time was a military term that referred not to the instruction used by a computer to solve problems, which were then called "codes," but rather to plans or proposed schedules for training, logistical supply, or deployment of combat units. The somewhat confusing name "linear programming," Dantzig explained in the book, is based on this military definition of "program."[4]
In 1963, Dantzig’s Linear Programming and Extensions was published by Princeton University Press. Rich in insight and coverage of significant topics, the book quickly became “the bible” of linear programming.
Books by George Dantzig:
Articles, a selection:
|
|